Summary of the properties of quadrilaterals (diagonals, angles and sides)

Sulling.			Sides
Quadrilateral	Diagonals	Angles	The opposite sides
A E C	The diagonals of a parallelogram bisect each other.	The opposite angles of a parallelogram are equal. The interior angles add up to 360° .	of a parallelogram are parallel and equal.
B C	The diagonals of a rhombus bisect each other at right angles. The diagonals bisect the vertex angles.	The opposite angles of a rhombus are equal. The interior angles add up to 360°.	The opposite sides of a rhombus are parallel and all sides are equal.
A E C	The diagonals of a rectangle bisect each other and are equal in length.	The interior angles of a rectangle are equal to 90°. The interior angles add up to 360°.	The opposite sides of a rectangle are parallel and equal.
A 45° 45° D 45° 45°	The diagonals of a square bisect each other at right angles and are equal in length. The diagonals bisect the vertex angles.	The interior angles of a square are equal to 90°. The interior angles add up to 360°.	The opposite sides of a square are parallel and all sides are equal.
A D C	The diagonals of a trapezium intersect but don't bisect each other. They lie between parallel lines and therefore the alternate angles are equal.	The interior angles add up to 360°.	One pair of opposite sides are parallel.
$A \xrightarrow{B} C$	The diagonals are perpendicular and one diagonal bisects the other. One of the diagonals bisects the vertex angles.	One pair of opposite angles are equal. The interior angles add up to 360°.	Two pairs of adjacent sides are equal.

(c)

ABCD is a parallelogram.

$$\hat{A}_1 = 20^\circ$$
, $\hat{B}_1 = 90^\circ$, $\hat{B}_2 = 30^\circ$,

DE = 2 cm and AE = 3 cm. Calculate:

- (1) the length of AC and BD
- (2) the size of θ

(d) In rhombus PQRS, PQ = 26 cm and QS = 48 cm. Calculate the length of PR.

(e) ABCD is a kite. The diagonals intersect at E. BD = 30 cm, AD = 17 cm and DC = 25 cm. Determine:

- (1) AE
- (2) AC
- (3) \hat{B}_1 if $\hat{A}_1 = 20^\circ$

(f) ABCD is a square. $A\hat{E}B = 54^{\circ}$. Calculate \hat{F}_1 .

- (g) ABCD is a rectangle and DECF is a rhombus. DÊC = 60°
 - (1) Calculate the size of: $\hat{E}_1, \hat{F}_1, \hat{B}_2$ and \hat{B}_1
 - (2) Calculate the length of AC if EC = 4 cm

